UNTERSUCHUNGEN ZUR OXIDATION DES DISCHWEFEL-LIGANDEN IN $(\eta^{5}-C_{5}Me_{5})M(CO)_{2}S_{2}$ (M = Mn, Re) *

M. HERBERHOLD* und B. SCHMIDKONZ

Laboratorium für Anorganische Chemie der Universität Bayreuth, Universitätsstrasse 30, D-8580 Bayreuth (Bundesrepublik Deutschland)

(Eingegangen den 23. Dezember 1985)

Summary

The halfsandwich compounds $Cp^*M(CO)_2S_2$ (M = Mn or Re) are oxidized by 3-chloro-perbenzoic acid at the disulfur ligand to give disulfur monoxide complexes, $Cp^*M(CO)_2S_2O$ **. Further oxidation leads to $Cp^*M(CO)_2S_2O_2$. A comparison of the carbonyl stretching frequencies, $\nu(CO)$, and derived force constants, k(CO), indicates that sulfur-containing ligands (S₂, SO, SO₂, S₂O, S₂O₂) are stronger electron-withdrawing groups than the ligand carbon monoxide, CO. The acceptor capacity increases in the order S₂ < S₂O < S₂O₂.

Zusammenfassung

Die Halbsandwich-Verbindungen $Cp^*M(CO)_2S_2$ (M = Mn oder Re) werden durch 3-Chlor-perbenzoesäure am Dischwefel-Liganden zu Dischwefelmonoxid-Komplexen $Cp^*M(CO)_2S_2O$ oxidiert **. Die weitere Oxidation führt zu Cp^*M - $(CO)_2S_2O_2$ (**5a**, **b**). Ein Vergleich der Valenzfrequenzen, $\nu(CO)$, und der daraus abgeleiteten Valenzkraftkonstanten, k(CO), lässt erkennen, dass schwefelhaltige Liganden (S₂, SO, SO₂, S₂O, S₂O₂) stärker elektronenabziehende Gruppen sind als der Ligand Kohlenmonoxid, CO. Die Akzeptorwirkung nimmt in der Reihenfolge S₂ < S₂O < S₂O₂ zu.

Einleitung

Die Oxidation von Schwefel-Liganden eröffnet die Möglichkeit, reaktive kleine Moleküle wie SO, S_2O und S_2O_2 in der schützenden Koordinationssphäre von

^{*} Herrn Professor Dr. Erwin Weiss, Hamburg, zu seinem 60. Geburtstag am 9. Juli 1986 gewidmet.

^{**} Abkürzungen: $Cp = \eta^5$ -cyclopentadienyl, η^5 -C₅H₅; $Cp^* = \eta^5$ -pentamethylcyclopentadienyl, η^5 -C₅Me₅; diphos = 1,2-Bis(diphenylphosphino)ethan, Ph₂PCH₂CH₂PPh₂.

Übergangsmetallkomplexen zu erzeugen. So wurden SO-verbrückte Mehrkernkomplexe wie $[CpMn(CO)_2]_2(\mu_2$ -SO) [1], Fe₃(CO)₉(μ_3 -SO)(μ_3 -SO) [2,3] und Fe₂-(CO)₆[Pt(PPh₃)₂](μ_3 -S)(μ_3 -SO) [2] durch Oxidation mit Luft [1] oder 3-Chlor-perbenzoesäure [2,3] aus den entsprechenden schwefelverbrückten Vorläufer-Komplexen erhalten. Für die beiden erstgenannten Komplexe liegen Röntgenstrukturanalysen vor [4,5].

Die analoge Oxidation von S_2 -Komplexen führt zur Bildung des S_2 O-Liganden. Einkernige S_2 O-Komplexe wie $[Ir(diphos)_2(S_2O)]^+$ [2,6], $Cp_2Nb(S_2O)Cl$ [2] und $Cp^*Mn(CO)_2S_2O$ [7] wurden durch Luftoxidation [7] oder mit Hilfe von Natriumperiodat [6] bzw. 3-Chlor-perbenzoesäure [2] dargestellt. Auch die zweikernige, S_2O -verbrückte Verbindung $[Mo(S_2O)(S_2C-NEt_2)_2]_2$ [8] entstand durch Oxidation eines schwefelhaltigen Primärkomplexes mit Luftsauerstoff.

Für die direkte oxidative Bildung eines S_2O_2 -Liganden gab es bisher nur ein Beispiel, die zuerst 1975 von Schmid und Ritter [9] beschriebene und 1984 von Rauchfuss und Mitarb. [2] erneut untersuchte Oxidation des Kations [Ir(diphos)₂-(S₂)]⁺ mit Periodat [6,9] bzw. 3-Chlor-perbenzoesäure [2]. Die Geometrie des Kations im S₂O₂-haltigen Salz [Ir(diphos)₂(S₂O₂)]Cl wurde durch eine Röntgenstrukturanalyse aufgeklärt [9]. Das Salz [Ir(diphos)₂(S₂O₂)]PF₆ [2] entstand nur in Form eines (von drei möglichen) Diastereomeren [2].

Wir haben die Oxidation der Halbsandwich-Komplexe $Cp^*M(CO)_2S_2$ (M = Mn, Re) mit 3-Chlor-perbenzoesäure untersucht und berichten im folgenden über die Darstellung und spektroskopische Charakterisierung der Dischwefelmonoxid-Komplexe $Cp^*M(CO)_2S_2O$ sowie über deren weitere Oxidation zu $Cp^*M(CO)_2S_2O_2$. Über den Mangankomplex $Cp^*Mn(CO)_2S_2O$ und seine Molekülstruktur liegt eine Kurzmitteilung [7] vor.

Ergebnisse und Diskussion

Darstellung und Charakterisierung der Komplexe

Durch Photolyse der Halbsandwich-Verbindungen $Cp^*M(CO)_3$ (M = Mn (1a), Re (1b)) in Tetrahydrofuran-Lösung (THF) lassen sich unter CO-Abspaltung die reaktiven 16-Elektronen-Komplexfragmente [Cp^{*}M(CO)₂] erhalten, die durch das Donorsolvens intermediär stabilisiert werden. Die Lösungen der THF-Komplexe Cp^{*}M(CO)₂(THF) (M = Mn (2a) (vgl. Lit. 10–12), Re (2b) (vgl. Lit. 12–14)) reagieren mit überschüssigem Schwefel unter Bildung der Dischwefel-Komplexe Cp^{*}M(CO)₂S₂ (3a, b); im Falle des Mangans entstehen auch merkliche Mengen der Zweikernkomplexe [Cp^{*}Mn(CO)₂]₂(μ -S) und [Cp^{*}Mn(CO)₂]₂(μ -S₂).

Unter den hier gewählten Reaktionsbedingungen ergibt der unsubstituierte Halbsandwich-Komplex $CpMn(CO)_3$ ausschliesslich die grünen Zweikernkomplexe $[CpMn(CO)_2]_2S_n$ (n = 1, 2) [15]; der einkernige Dischwefel-Komplex $CpMn(CO)_2S_2$ ist bisher nicht bekannt. Bei Verwendung von $CpRe(CO)_3$ wurde ein Gemisch von Ein- und Zweikernkomplexen isoliert [16,17], das auch den röntgenographisch charakterisierten [16] Dischwefel-Komplex $CpRe(CO)_2S_2$ enthält. Im Falle der Pentamethylcyclopentadienyl-Komplexe $Cp^*M(CO)_3$ (1a, b) ist jedoch der einkernige Dischwefel-Komplex $Cp^*M(CO)_2S_2$ (3a, b) das dominierende Produkt.

Für Cp^{*}Re(CO)₂S₂ (**3b**) liegt eine Röntgenstrukturanalyse vor [18], nach der der S₂-Ligand – wie im entsprechenden CpRe(CO)₂S₂ [16] – seitlich an das Metall koordiniert ist. Die Geometrie des ReS₂-Dreiringes ist in beiden Verbindungen ähnlich (Cp^{*}Re(CO)₂S₂ (**3b**): Re–S 241.9(3) und 242.1(3) pm, S–S 202.3(6) pm, \ll SReS 49.4(1)°; CpRe(CO)₂S₂ [16]: Re–S 241.0(2) pm, S–S 199.6(5) pm, \ll SReS 48.9(2)°). Da der S–S-Abstand zwischen den charakteristischen Werten für die S=S-Doppelbindung in freiem Dischwefel, S₂ (189 pm), und die S–S-Einfachbindung in Cyclooctaschwefel, S₈ (206 pm), gefunden wird [19], kann der S₂-Ligand als koordiniertes Heteroolefin aufgefasst werden, dessen Doppelbindung durch die η^2 -Koordination an das Metall aufgeweitet ist [16].

Die Dischwefel-Komplexe 3a, b lassen sich mit der stöchiometrischen Menge an 3-Chlor-perbenzoesäure glatt zu den entsprechenden Dischwefelmonoxid-Komplexen $Cp^*M(CO)_2S_2O$ (4a, b) oxidieren. Im Gegensatz zu $Cp^*Re(CO)_2S_2$ (3b), das in Lösung (THF) luftbeständig ist, wird Cp^{*}Mn(CO)₂S₂ (3a) schon durch Einblasen von Luft in die THF-Lösung in 4a übergeführt [7]; wegen der nachfolgenden oxidativen Zersetzung von 4a ist die Oxidation mit Persäure jedoch vorzuziehen. Komplex 4a wurde röntgenographisch charakterisiert [7]; das Sauerstoffatom des S2O-Liganden ist vom Cp*-Ring abgewandt. Das Schwefelatom im Zentrum des S₂O-Liganden ist pyramidal konfiguriert, und es wären daher zwei isomere Formen denkbar. Die IR- und ¹H- bzw. ¹³C-NMR-Spektren von 4a, b (Tabelle 1) geben aber keinen eindeutigen Hinweis, dass mehr als eine Sorte von Molekülen in der Lösung vorliegt. Allerdings lässt sich in den ¹H- und ¹³C-NMR-Spektren des analog entstehenden Cyclopentadienylrhenium-Komplexes CpRe(CO)₂S₂O [20] beim Abkühlen eine temperaturabhängige Aufspaltung der Cp-Ring-Signale beobachten; bei Raumtemperatur ist die gegenseitige Umwandlung der beiden Formen (durch Inversion am zentralen Schwefel oder Rotation des S₂O-Liganden) offenbar schon so schnell, dass nur noch das gemittelte Signal auftritt. Die Freie Aktivierungsenthalpie $\Delta G^{*}(T_{c})$ dieser Umwandlung (bei der Koaleszenztemperatur T_{c}) errechnet sich zu ca. 57 kJ mol⁻¹. - Die IR-Feststoffspektren (KBr) von 4a, b zeigen im Bereich der ν (SO)-Schwingungen zwischen 1000 und 1100 cm⁻¹ neben der erwarteten sehr starken $\nu(SO)$ -Absorption bei ca. 1055 cm⁻¹ eine schwächere Bande bei ca. 1025 cm^{-1} , die noch nicht gedeutet werden kann.

Die weitere Oxidation der S₂O-Komplexe 4a, b mit 3-Chlor-perbenzoesäure in THF-Lösung führt zu offenbar einkernigen Verbindungen 5a, b, die einen S₂O₂-Liganden enthalten. Im Falle von Cp*Mn(CO)₂S₂O₂ (5a) ist die Zusammensetzung durch Elementaranalyse gesichert. Allerdings verlieren die S₂O₂-Komplexe leicht ein Sauerstoffatom und gehen unter der Einwirkung von Licht oder Wärme wieder in die entsprechenden S₂O-Komplexe 4a, b über. Diese Reaktion verläuft bei 5b leichter als bei 5a, und die Umwandlung von 5b in 4b kann bei Raumtemperatur im ν (CO)-Bereich des IR-Spektrums gut beobachtet werden. Es gelang bisher nicht, 5b in reiner Form zu isolieren. Das Massenspektrum von Cp*Mn(CO)₂S₂O₂ (5a) enthält kein Molekülion; als schwerstes Fragmention tritt $[M - 16]^+$ auf, das der Zusammensetzung 4a entspricht. Das Massenspektrum von 5a unterscheidet sich jedoch von dem von 4a darin, dass die SO-haltigen Bruchstücke $[Cp*Mn(CO)_2SO]^+$ bzw. $[Cp*MnSO]^+$ bei 5a mit wesentlich höherer Intensität auftreten.

Die ¹H- und ¹³C-NMR-Spektren von **5a**, **b** zeigen jeweils die Anwesenheit von zwei Cp*-Ringen an (Tabelle 1); demnach liegen in Lösung zwei Isomere (in unterschiedlicher Konzentration) vor. Die Addition eines weiteren Sauerstoffatoms an einen S₂O-Liganden kann prinzipiell zu drei Typen von S₂O₂-Liganden (A-C) führen:

Die "trans-Form" (A) wurde beim einzigen bisher bekannten S_2O_2 -Komplex, $[Ir(diphos)_2(S_2O_2)]Cl$, röntgenographisch nachgewiesen [9]. Während die Salze des $[Ir(diphos)_2(S_2O_2)]^+$ -Kations im IR-Spektrum im Bereich zwischen 1000 und 1100 cm⁻¹ zwei sehr starke ν (SO)-Absorptionen zeigen ($[Ir(diphos)_2(S_2O_2)]Cl$ 1038 und 1026 (Nujol) [9], $[Ir(diphos)_2(S_2O_2)]PF_6$ 1045 und 1019 (Nujol) [2]), ist das Muster der ν (SO)-Absorptionen in 5a, b (Tabelle 1) komplizierter und mit der Anwesenheit isomerer Formen auch im Feststoff (KBr) vereinbar. Allerdings wäre für die unsymmetrische "Thio-schwefeltrioxid"-Form (C) wie beim SO₂-Komplex Cp*Mn(CO)₂-SO₂ (6a) (Tabelle 1) eine viel stärkere Aufspaltung der ν (SO)-Banden zu erwarten. Es wird daher angenommen, dass die beiden sich in den NMR-Spektren von 5a, b manifestierenden Isomeren den S₂O₂-Liganden in der *trans*- oder der *cis*-Form (A bzw. B) enthalten.

Vergleich der Akzeptorfähigkeit schwefelhaltiger Liganden

Die hier untersuchten Neutralkomplexe des Typs $Cp^*M(CO)_2L$ (M = Mn, Re; L = S₂, S₂O, S₂O₂) bieten die Möglichkeit, mit Hilfe ihrer CO-Valenzfrequenzen $\nu(CO)$ oder der daraus berechneten Kraftkonstanten k(CO) Aussagen über die Donor/Akzeptor-Eigenschaften des Liganden L zu machen. In Fig. 1 sind die Kraftkonstanten, k(CO), in Abhängigkeit vom Metall und vom Liganden L zusammengestellt. Es wurden auch analoge Komplexe mit unsubstituiertem Cp-Ringliganden in den Vergleich miteinbezogen.

Die Reihe der $[Cp^*Mn(CO)_2]$ -Komplexe wurde um zwei zusätzliche Verbindungen mit Schwefeloxid-Liganden, $Cp^*Mn(CO)_2SO_2$ (6a) und $[Cp^*Mn(CO)_2]_2SO$ (7a), erweitert. Beide Komplexe waren bisher nicht beschrieben worden, aber in beiden Fällen liegt für den entsprechenden Komplex mit unsubstituiertem Cp-

TABELLE 1

Ξ
Ξ.
F
X.
3
2
E.
<u> </u>
2
5
E.
S
R
Ë
¥
2
¥
Ξ
Ē
Ū.
PIS
<u></u>
SK.
9
Ē
Ξ
SP

Komplex	Farbe	Infrarot			¹ H-NMR ^d	¹³ C-NMR ^d		» SM
		$p(CO)^{a}$ (cm ⁻¹)	$\frac{k(\text{CO})^{b}}{(\text{N cm}^{-1})}$	μ (SO) c (μ (SS)) c (cm ⁻¹)	ð(C ₅ Me ₅) (ppm)	δ(C ₅ Me ₅) (ppm)	δ(C ₅ Me ₅) (ppm)	m/e
Cp [*] Mn(CO) ₁ (1a)	gelb	2004, 1917	15.30		1.85	10.2	95.4	274(M ⁺)
Cp*Re(CO), (Ib)	farblos	2008, 1912	15.27	ţ	2.14	10.7	98.4	306(M ⁺)
Cp*Mn(CO) ₂ S ₂ (3a)	braun	1997, 1950	15.73		1.76	9.8	102.0	310(M ⁺)
				(551 m)				
Cp* Re(CO) ₂ S ₂ (3b)	braunrot	1997, 1925	15.53	1	2.00	10.3	103.6	442(M ⁺)
				(531m)				
Cp* Mn(CO) ₂ S ₂ O (4a)	rot	2004, 1955	15.83	1053s, 1023w	1.71	9.3	100.9	$326(M^+)$
$Cp^{*}Re(CO)_{2}S_{2}O(4b)$	orange	2004, 1935	15.67	1056s, 1027m	1.95	9.9	102.9	$458(M^+)$
Cp*Mn(CO) ₂ S ₂ O ₂ (5a)	orangegelb	2013, 1967	15.99	1071s, 1052w 1022s	1.89/1.75	0.6/7.6	103.0/100.1	326 (M-16) ⁻
Cp* Re(CO) ₂ S ₂ O ₂ (5b)	gelb	2018, 1961	15.99	1070m, 1053m, 1020s	2.14/1.99			
Cp* Mn(CO), SO, (6a)	orange	1999, 1948	15.73	1256s, 1089s	1.88	9.9	8.66	$310(M^+)$
[Cp [*] Mn(CO) ₂] ₂ SO (7a)	violett	1986ss, 1936ss, 1918w, 1901w	(15.53)	1031s	1.75	9.9	97.8	540(M ⁺)

į â 39

Fig. 1. Kraftkonstanten, k(CO), der Komplexe CpM(CO)₂L und Cp^{*}M(CO)₂L (M = Mn, Re) in Abhängigkeit vom Liganden L.

Ringliganden eine Röntgenstrukturanalyse vor. Die Pentamethylcyclopentadienyl-Verbindungen 6a und 7a sollten analog gebaut sein [21].

Der Schwefeldioxid-Komplex CpMn(CO)₂SO₂ [22] enthält einen über Schwefel η^1 -gebundenen SO₂-Liganden mit trigonal-planar koordiniertem Schwefel. Die SO₂-Ebene steht senkrecht zur Cp-Ringebene. Der zweikernige Schwefelmonoxid-Komplex [CpMn(CO)₂]₂(SO) [4] enthält eine SO-Brücke, die nur über Schwefel an die beiden [CpMn(CO)₂]-Fragmente gebunden ist; wiederum ist der Schwefel trigonal-

planar konfiguriert. Die kurzen Mangan-Schwefel-Abstände in CpMn(CO)₂SO₂ (203.7(5) pm [22]) und in [CpMn(CO)₂]₂SO (212.6(2) und 212.1(2) pm [4]) rechtfertigen die Formulierung von Mn=S-Doppelbindungen. Lorenz und Mitarb. haben darauf hingewiesen [4], dass der schrittweise Ersatz von Sauerstoffatomen in SO₃ durch [CpMn(CO)₂]-Reste im Sinne der Isolobal-Analogie [23] zu einer Reihe des Typs [CpMn(CO)₂]_{3-n}SO_n (n = 3 bis 0) führt; das Endghed (n = 0) ist afferdings bisher nur in Form des analogen Tellurkomplexes [CpMn(CO)₂]₃Te [24] bekannt.

Die in Tabelle 1 und in Fig. 1 zusammengestellten Kraftkonstanten k(CO)können als relatives Mass für die Akzeptorfähigkeit der schwefelhaltigen Liganden angesehen werden. Der Ersatz eines CO-Liganden in CpM(CO)₃ (M = Mn, Re) oder Cp^{*}M(CO)₃ (M = Mn (1a), Re (1b)) durch den starken Donor Tetrahydrofuran bewirkt eine Erhöhung der Ladungsdichte im Fragment [CpM(CO)₂] bzw. [Cp^{*}M(CO)₂], die in einer verstärkten Rückbindung vom Metall zu den beiden verbleibenden CO-Liganden und damit in einem Absinken der ν (CO)-Frequenzen und der zugehörigen Kraftkonstante k(CO) zum Ausdruck kommt. Dagegen wird bei der Anlagerung schwefelhaltiger Moleküle an die koordinativ ungesättigten 16-Elektronen-Fragmente stets ein Anstieg der ν (CO)-Frequenzen und damit der Kraftkonstante k(CO) beobachtet. Eine qualitative Betrachtung de k(CO)-Werte führt zu zwei Schlussfolgerungen:

(1) Sämtliche schwefelhaltigen Liganden übertreffen den Standard-Akzeptorliganden CO in der Fähigkeit, Ladung von einem Fragment des Typs $[CpM(CO)_2]$ bzw. $[Cp^*M(CO)_2]$ abzuziehen, sie sind also alle relativ zu CO bessere Akzeptorliganden. Dies steht in Einklang mit früheren Untersuchungen an ähnlichen Halbsandwich-Komplexen, die die Liganden CS und CS₂ [25] bzw. S₂ und Se₂ [16] enthielten.

(2) Die Akzeptorfähigkeit gegenüber einem Komplexfragment $[Cp^*M(CO)_2]$ steigt erwartungsgemäss mit zunehmender Oxidationszahl des Schwefels in der Reihe $S_2 < S_2O < S_2O_2$ an (vgl. **3a-5a**, **3b-5b**); dies scheint für seitlich gebundene Schwefel-Liganden typisch zu sein. Dagegen hat die Oxidation der Schwefelbrücke in $[Cp^*Mn(CO)_2]_2S$ ($\nu(CO)$ 1984ss, 1929ss, 1920w und 1893w in THF) zu $[Cp^*Mn(CO)_2]_2SO$ (**7a**, $\nu(CO)$ 1986ss, 1936ss, 1918w und 1901w in THF) fast keinen Einfluss auf die CO-Valenzfrequenzen der $[Cp^*Mn(CO)_2]$ -Reste.

Beschreibung der Versuche

Alle Arbeiten wurden, wenn nicht anders angegeben, unter Schutzgas (N_2) durchgeführt. Die Lösungsmittel waren getrocknet und wurden vor Gebrauch im N₂-Strom destilliert (THF, Diethylether und Pentan über Na/K-Legierung, Dichlormethan über P₄O₁₀, Aceton über CaH₂).

Die Pentamethylcyclopentadienyl-Halbsandwich-Komplexe $Cp^*Mn(CO)_3$ (1a) [11] und $Cp^*Re(CO)_3$ (1b) [26] wurden nach Literaturangaben dargestellt.

Zur Photolyse von **1a** bzw. **1b** in THF-Lösung wurde ein Quecksilber-Hochdruckbrenner Q 700 (Quarzlampen-Gesellschaft Hanau GmbH) verwendet. Während **1a** (in Durangefässen) vollständig zu $Cp^*Mn(CO)_2(THF)$ (**2a**) [10-12] umgesetzt wurde, konnte **1b** (in Quarzgefässen) nur zu etwa 60% in $Cp^*Re(CO)_2$ -(THF) (**2b**) [12-14] umgewandelt werden; längere Bestrahlung führte vermehrt zu braunen Zersetzungsprodukten [vgl. 27].

$Cp^*Mn(CO)_2S_2$ (3a)

Eine Lösung von 430 mg (1.57 mmol) Cp*Mn(CO)₃ (1a) in 200 ml THF wurde 3

h photolysiert und dann zu einer Lösung von 800 mg (25 mmol) Schwefel in 100 ml THF zugegeben. Es wurde 1 h gerührt und anschliessend zur Trockne gebracht. Zur Abtrennung vom nicht umgesetzten Schwefel wurde der braune Rückstand zweimal mit je 30 ml Aceton extrahiert; die **3a** enthaltende Acetonlösung wurde über eine mit Na₂SO₄ bedeckte Fritte filtriert und wieder zur Trockne gebracht. Das Rohprodukt (**3a**) wurde in wenig CH₂Cl₂ gelöst und auf eine mit Kieselgel/Pentan (Grace CCR 60) gefüllte Chromatographiersäule (20×1.5 cm) gegeben. Mit Pentan wurden Reste von **1a** und Schwefel ausgewaschen. Mit Pentan/CH₂Cl₂ (3/1) liess sich eine grüne Zone eluieren, die die Zweikernkomplexe [Cp^{*}Mn(CO)₂]₂S und [Cp^{*}Mn(CO)₂]₂S₂ enthielt. Anschliessend wurde **3a** mit CH₂Cl₂ als braune Zone ausgewaschen.

Braune Kristalle, Ausbeute 300 mg (60%). (Gef.: C, 45.75; H, 4.93; Mn, 17.7; O, 11.7; S, 20.3; Molmasse 310 (massenspektr.). $C_{12}H_{15}MnO_2S_2$ (310.32) ber.: C, 46.45; H, 4.87; Mn, 17.70; O, 10.31; S, 20.66%).

$Cp^*Re(CO), S, (3b)$

500 mg (1.2 mmol) $Cp^*Re(CO)_3$ wurden in 200 ml THF gelöst, und die Lösung wurde 8 h photolysiert. Die gelbbraune Photolyselösung wurde mit 250 mg (7.8 mmol) Schwefelblüte versetzt, 12 h (über Nacht) bei Raumtemperatur gerührt und zur Trockne gebracht. Das Rohprodukt wurde – ähnlich wie bei **3a** – durch Säulenchromatographie an Kieselgel (Grace CCR 60) gereinigt. Die zunächst mit Pentan/CH₂Cl₂ (3/1) eluierte grüne Zone enthielt hauptsächlich nicht umgesetzten Schwefel. Das Produkt **3b** wurde mit Pentan/CH₂Cl₂ (2/1) als braunrote Zone ausgewaschen.

Braunrote Kristalle, Ausbeute 250 mg (47%). Es wurde eine Röntgenstrukturanalyse durchgeführt [18].

$Cp^*Mn(CO)_2S_2O$ (4a)

Der S₂O-Komplex 4a kann, wie beschrieben [7], durch Oxidation von 3a mit Luftsauerstoff in THF-Lösung erhalten werden. Schonender und mit besseren Ausbeuten verläuft die stöchiometrische Oxidation von 3a mit 3-Chlorperbenzoesäure *. Dazu wurde eine Lösung von 210 mg (1.06 mmol) 3-Chlor-perbenzoesäure (Merck, 85-prozentig) in 30 ml THF in einem Ethanol/Trockeneis-Bad auf -78° C gekühlt und dann unter Rühren mit 310 mg (1.00 mmol) kristallinem Cp*Mn(CO)₂S₂ (3a) versetzt. Das Kühlbad wurde entfernt, so dass sich die Reaktionslösung (unter Rühren) im Laufe von 1 h auf Raumtemperatur erwärmen konnte. Die Lösung wurde zur Trockne gebracht, der Rückstand wurde in 40 ml CH₂Cl₂ gelöst, und die entstandene 3-Chlor-benzoesäure wurde durch zweimaliges Ausschütteln mit je 40 ml einer wässrigen Lösung von 0.5 g Na₂CO₃ · 10H₂O entfernt. Die rote CH₂Cl₂-Phase wurde über wasserfreies Na₂SO₄ filtriert und über Molekularsieb (Roth, 3 Å) getrocknet.

Rote Kristalle, Ausbeute 270 mg (80%). (Gef.: C, 44.26; H, 4.73; Mn, 16.9; O, 14.5; S, 19.3; Molmasse 326 (massenspektr.). $C_{12}H_{15}MnO_3S_2$ (326.32) ber.: C, 44.17; H, 4.63; Mn, 16.84; O, 14.71; S, 19.65%).

^{*} Bei raschem Arbeiten ist bei den Oxidationen mit 3-Chlor-perbenzoesäure kein Schutzgas erforderlich. Die angegebene Reihenfolge beim Mischen der Edukte muss eingehalten werden, da sonst Verpuffungen auftreten können.

$Cp^{\star}Re(CO)_2S_2O(4b)$

Analog zur Vorschrift für 4a wurde eine auf -78° C gekühlte Lösung von 210 mg (1.06 mmol) 3-Chlor-perbenzoesäure (Merck, 85-prozentig) in 30 ml THF unter Rühren mit 440 mg (1.00 mmol) kristallinem Cp*Re(CO)₂S₂ (3b) versetzt *. Nach Entfernen des Kühlbads wurde 2 h gerührt, wobei sich die Lösung auf Raumtemperatur erwärmte. Das Solvens THF wurde abgezogen, der Rückstand wurde in 30 ml CH₂Cl₂ aufgenommen und die Lösung zweimal mit Sodalösung (0.5 g Na₂CO₃ · 10H₂O in 40 ml Wasser) ausgeschüttelt. Die orange gefärbte Phase wurde über wasserfreies Na₂SO₄ filtriert und über Molekularsieb (Roth, 3 Å) getrocknet.

Orange Kristalle, Ausbeute 240 mg (50%). (Gef.: C, 31.80; H, 3.42; O, 10.3; Re, 40.4; S, 13.7; Molmasse 458 (massenspektr., bez. auf ¹⁸⁷Re). $C_{12}H_{15}O_3ReS_2$ (457.59) ber.: C, 31.50; H, 3.30; O, 10.49; Re, 40.69; S, 14.01%).

$Cp^*Mn(CO)_2S_2O_2$ (5a)

Zu einer Lösung von 110 mg (0.55 mmol) 3-Chlor-perbenzoesäure (Merck, 85-prozentig) in 20 ml THF wurden bei -78° C (Ethanol/Trockeneis-Bad) 150 mg (0.46 mmol) kristallines Cp^{*}Mn(CO)₂S₂O (4a) zugegeben *. Die Reaktionslösung wurde nach Entfernen des Kühlbades 2 h gerührt, dann bei Raumtemperatur zur Trockne gebracht und der Rückstand zur Abtrennung der Benzoesäure zweimal mit je 10 ml Diethylether extrahiert. Das Rohprodukt wurde aus CH₂Cl₂/THF umkristallisiert.

Orangegelbe Kristalle, die kühl und dunkel aufbewahrt werden müssen. Ausbeute 100 mg (64%). (Gef.: C, 41.87; H, 4.38; Mn, 16.1; O, 18.3; S, 18.6. $C_{12}H_{15}MnO_4S_2$ (342.32) ber.: C, 42.10; H, 4.42; Mn, 16.05; O, 18.70; S, 18.73%).

$Cp^*Mn(CO)_2SO_2$ (6a) [29]

Eine Lösung von 400 mg (1.46 mmol) $Cp^*Mn(CO)_3$ (1a) in 200 ml THF wurde so lange (3 h) bestrahlt, bis die $\nu(CO)$ -Absorptionen von 1a verschwunden waren. Durch die weinrote THF-Lösung von $Cp^*Mn(CO)_2$ (THF) (2a) wurde dann SO_2 geleitet, bis die Farbe nach gelb umschlug. Die Reaktionslösung wurde zur Trockne gebracht, der Rückstand in wenig CH_2Cl_2 aufgenommen und die Lösung auf eine mit Kieselgel (Grace CCR 60) in Pentan gefüllte Chromatographiersäule (20 × 1.5 cm) gebracht. Bei der Elution mit Pentan/CH₂Cl₂ (2/1) wurde zunächst eine grüne Zone aufgefangen, die hauptsächlich 1a enthielt, dann folgte mit reinem CH₂Cl₂ eine dünne violette Zone; das Produkt 6a konnte mit THF als breite, gelb-orange Zone ausgewaschen worden.

Orange Kristalle, Ausbeute 250 mg (55%).

$[Cp^{\star}Mn(CO)_2]_2SO(7a)$

410 mg (1.5 mmol) Cp^{*}Mn(CO)₃ (1a) wurden in 200 ml THF gelöst und vollständig photolysiert. Die entstandene Lösung von 2a wurde mit 48 mg (1.5 mmol) Schwefelblüte versetzt und 1–2 h gerührt, wobei sich die ursprünglich weinrote Lösung tiefgrün färbte. Die grüne Lösung, die die Zweikernkomplexe [Cp^{*}Mn(CO)₂]₂S und [Cp^{*}Mn(CO)₂]₂S₂ enthielt, wurde an Luft stehen gelassen und nur im Laufe von einigen Stunden gelegentlich umgeschüttelt, bis der Farbumschlag nach tiefviolett erfolgt war. Dann wurde das Solvens abgezogen und das Rohprodukt 7a an Kieselgel (Grace CCR 60, Säule 40×1.5 cm) chromatographiert. Mit Pentan/CH₂Cl₂ (5/1) wurde zunächst eine hellgrüne Zone eluiert, die nicht oxidierte Zweikernkomplexe enthielt. Anschliessend wurde 7a mit Pentan/CH₂Cl₂ (2/1) als breite, violette Zone ausgewaschen.

Ausbeute 100 mg (25%).

Spektroskopische Messungen

Folgende Spektrometer standen zur Verfügung: ¹H- und ¹³C-NMR-Spektren: JEOL FX 90Q (CDCl₃-Lösungen, 0°C), Massenspektren: Varian MAT CH7 (Ionisierungsenergie 70 eV), IR-Spektren: Perkin–Elmer 983 G (Auflösung 0.5 cm⁻¹).

Die in Fig. 1 angegebenen Kraftkonstanten k(CO) wurde aus den $\nu(CO)$ -Absorptionen in THF berechnet [28]. Ausser den in Tabelle 1 aufgeführten Werten wurden nachfolgende Daten verwendet:

Komplex	ν(CO) (c	m^{-1})	k(CO)	
			$(N \ cm^{-1})$	
CpMn(CO) ₃	2021 (A ₁), 1934 (E)	15.57	
CpRe(CO) ₃	2022	1926	15.49	
CpMn(CO) ₂ (THF)	1928 (A ₁), 1852 (B)	14.43	
$CpRe(CO)_2(THF)$	1912	1839	14.21	
$Cp^{\star}Mn(CO)_{2}(THF)(2a)$	1907	1834	14.13	
$Cp^*Re(CO)_2(THF)(2b)$	1894	1823	13.95	
$CpRe(CO)_2S_2$	2013	1942	15.80	
$CpRe(CO)_2S_2O$	2017	1947	15.87	
$CpMn(CO)_2SO_2$	2015	1964	15.99	

Dank

Die hier beschriebenen Untersuchungen wurden dankenswerterweise von der Deutschen Forschungsgemeinschaft (im Rahmen des Schwerpunktprogramms "Reaktive anorganische Moleküle") und vom Fonds der Chemischen Industrie unterstützt.

Literatur

- 1 M. Höfler und A. Baitz, Chem. Ber., 109 (1976) 3147.
- 2 J.E. Hoots, D.A. Lesch und T.B. Rauchfuss, Inorg. Chem., 23 (1984) 3130.
- 3 I.-P. Lorenz und J. Messelhäuser, Z. Naturforsch. B, 39 (1984) 403.
- 4 I.-P. Lorenz, J. Messelhäuser, W. Hiller und K. Haug, Angew. Chem., 97 (1985) 234; Angew. Chem., Int. Ed. Engl., 24 (1985) 228.
- 5 L. Markó, B. Markó-Monostory, T. Madach und H. Vahrenkamp, Angew. Chem., 92 (1980) 225; Angew. Chem., Int. Ed. Engl., 19 (1980) 226.
- 6 G. Schmid und G. Ritter, Angew. Chem., 87 (1975) 673; Angew. Chem., Int. Ed. Engl., 14 (1975) 645.
- 7 M. Herberhold, B. Schmidkonz, M.L. Ziegler und T. Zahn, Angew. Chem., 97 (1985) 517; Angew. Chem., Int. Ed. Engl., 24 (1985) 515.
- 8 J. Dirand-Colin, M. Schappacher, L. Ricard und R. Weiss, J. Less-Common Met., 54 (1977) 91.
- 9 G. Schmid, G. Ritter und T. Debaerdemaeker, Chem. Ber., 108 (1975) 3008.
- 10 W.A. Herrmann, R. Serrano und J. Weichmann, J. Organomet. Chem., 246 (1983) C57.
- 11 I. Bernal, J.D. Korp, W.A. Herrmann und R. Serrano, Chem. Ber., 117 (1984) 434.
- 12 W.A. Herrmann, R. Serrano, A. Schäfer, W. Küsthardt, M.L. Ziegler und E. Guggolz, J. Organomet. Chem., 272 (1984) 55.
- 13 W.A. Herrmann, R. Serrano und H. Bock, Angew. Chem., 96 (1984) 364; Angew. Chem., Int. Ed. Engl., 23 (1984) 383.

- 14 M. Herberhold, B. Schmidkonz, U. Thewalt, A. Razavi, H. Schöllhorn, W.A. Herrmann und C. Hecht, J. Organomet. Chem., 299 (1986) 213.
- 15 M. Herberhold, D. Reiner, B. Zimmer-Gasser und U. Schubert, Z. Naturforsch. B, 35 (1980) 1281.
- 16 M. Herberhold, D. Reiner und U. Thewalt, Angew. Chem., 95 (1983) 1028; Angew. Chem., Int. Ed. Engl., 22 (1983) 1000; Angew. Chem. Suppl., (1983) 1343.
- 17 M. Herberhold, D. Reiner, K. Ackermann, U. Thewalt und T. Debaerdemaeker, Z. Naturforsch. B, 39 (1984) 1184.
- 18 U. Thewalt, noch unveröffentlicht.
- 19 A.F. Wells, Structural Inorganic Chemistry, 5. Auflage (1984), Clarendon Press, Oxford, 1984, S. 699-700.
- 20 M. Herberhold und B. Schmidkonz, noch unveröffentlicht.
- 21 Ausser dem Komplex des unsubstituierten Cyclopentadienylrings, [CpMn(CO)₂]₂SO [1,4], ist auch die entsprechende Verbindung des Methylcyclopentadienylrings, [(CH₃C₅H₄)Mn(CO)₂]₂SO, dargestellt worden: W.A. Schenk, J. Leissner und C. Burschka, Z. Naturforsch. B, 40 (1985) 1264.
- 22 C. Barbeau und R.J. Dubey, Can. J. Chem., 51 (1973) 3684.
- 23 R. Hoffmann, Angew. Chem., 94 (1982) 725; Angew. Chem., Int. Ed. Engl., 21 (1982) 711.
- 24 M. Herberhold, D. Reiner und D. Neugebauer, Angew. Chem., 95 (1983) 46; Angew. Chem., Int. Ed. Engl., 22 (1983) 59; Angew. Chem. Suppl., (1983) 10.
- 25 M. Herberhold und M. Süss-Fink, Angew. Chem., 89 (1977) 192; Angew. Chem., Int. Ed. Engl., 16 (1977) 194; Chem. Ber., 111 (1978) 2273.
- 26 A.T. Patton, C.E. Strouse, C.B. Knobler und J.A. Gladysz, J. Amer. Chem. Soc., 105 (1983) 5804.
- 27 D. Sellmann und E. Kleinschmidt, Z. Naturforsch. B, 32 (1977) 795.
- 28 F.A. Cotton und C.S. Kraihanzel, J. Amer. Chem. Soc., 84 (1962) 4432.
- 29 Anmerkung bei der Korrektur (3.3.86): Inzwischen wurde auch Cp*Re(CO)₂SO₂ (**6b**) aus 2**b** und der stöchiometrischen Menge einer Lösung von SO₂ in THF erhalten. (Gelbe Kristalle, IR: ν(CO) 2000, 1939 cm⁻¹ (THF), k(CO) 15.67 N cm⁻¹, ν(SO) 1259s, 1093s cm⁻¹ (KBr). ¹H-NMR: 2.16 ppm; ¹³C-NMR: 10.5 und 102.0 ppm (CDCl₃, 0°C). MS: m/e 442 (M⁺)).